Conflict-free Colorings of Uniform Hypergraphs with Few Edges
نویسنده
چکیده
A coloring of the vertices of a hypergraph H is called conflict-free if each edge e of H contains a vertex whose color does not repeat in e. The smallest number of colors required for such a coloring is called the conflict-free chromatic number of H, and is denoted by χCF (H). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph H with m edges, χCF (H) is at most of the order of rm logm, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colorable.
منابع مشابه
Conflict-Free Colourings of Uniform Hypergraphs With Few Edges
A coloring of the vertices of a hypergraph H is called conflict-free if each edge e of H contains a vertex whose color does not get repeated in e. The smallest number of colors required for such a coloring is called the conflict-free chromatic number of H, and is denoted by χCF (H). Pach and Tardos studied this parameter for graphs and hypergraphs. Among other things, they proved that for an (2...
متن کاملBrooks type results for conflict-free colorings and {a, b}-factors in graphs
A vertex-coloring of a hypergraph is conflict-free, if each edge contains a vertex whose color is not repeated on any other vertex of that edge. Let f(r,∆) be the smallest integer k such that each r-uniform hypergraph of maximum vertex degree ∆ has a conflict-free coloring with at most k colors. As shown by Tardos and Pach, similarly to a classical Brooks’ type theorem for hypergraphs, f(r,∆) ≤...
متن کاملUnique-Maximum and Conflict-Free Coloring for Hypergraphs and Tree Graphs
We investigate the relationship between two kinds of vertex colorings of hypergraphs: unique-maximum colorings and conflict-free colorings. In a unique-maximum coloring, the colors are ordered, and in every hyperedge of the hypergraph the maximum color in the hyperedge occurs in only one vertex of the hyperedge. In a conflict-free coloring, in every hyperedge of the hypergraph there exists a co...
متن کاملAround Erdős-Lovász problem on colorings of non-uniform hypergraphs
The talk deals with combinatorial problems concerning colorings of non-uniform hyper-graphs. Let H = (V, E) be a hypergraph with minimum edge-cardinality n. We show that if H is a simple hypergraph (i.e. every two distinct edges have at most one common vertex) and e∈E r 1−|e| c √ n, for some absolute constant c > 0, then H is r-colorable. We also obtain a stronger result for triangle-free simpl...
متن کاملConflict-Free Colorings - Of Graphs and Hypergraphs - Diploma-Thesis of
Conflict-free colorings are known as vertex-colorings of hypergraphs. In such a coloring each hyperedge contains a vertex whose color is not assigned to any other vertex within this edge. In this thesis the notion of conflict-free colorings is translated to edge-colorings of graphs. For graphs G and H a conflict-free coloring of G ensures an edge of unique color in each copy of H in G. The mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012